How To Select The Right Grade Of Steel


Stainless steel has a wide variety of applications. It is one of the most widely used steels, and happens to have a number of properties that make it preferable to carbon steel. It is corrosion resistance and impossible to rust, making it indispensable to the chemical, food, pharmaceutical and automobile industries. According to the industry needs, it can be processed into wires, tubes, bars, sheets or strips. There are many grades and types of stainless steel.


Ferritic Stainless Steel

This type is based on chromium with small quantities of carbon. With a structure similar to carbon and low alloy steels, ferritic stainless steel’s usage is usually limited to be used in thin sections, because it lacks toughness in welds. Plus, one cannot harden ferritic steel with heat treatment. But with an additional molybdenum, it can be used in sea water or other adverse conditions. Ferritic stainless steel also has some magnetic properties. Steel workers tend to choose ferritic stainless steel due to its resistance to stress corrosion cracking.

Austenitic Stainless Steel

Austenitic stainless steel happens to be one of the most common types of stainless steel. The microstructure includes nitrogen, nickel and manganese. It has the same structure as regular steel. At a much higher temperature, it is formable and easy to weld. It can be made corrosion resistant by adding chromium and molybdenum, but it cannot be hardened with heat. Austenitic stainless steel can retain a useful level of toughness and ductility, even when hardened to high strength. Austenitic stainless steel with higher nickel content than usual has increased resistance to stress corrosion cracking. Usually non-magnetic, austenitic stainless steel might exhibit some magnetic properties depending upon its composition.

Martensitic Stainless Steel

Martensitic stainless steel is based on chromium with high carbon levels. It can be tempered and hardened like carbon and low-alloy steels. Martensitic stainless steel is used where a moderate level of corrosion resistance but high strength is required. It is among the magnetic types of stainless steel, but it has low formability and weldability. In products where sheet and plate form is needed, this steel is used.

Duplex Stainless Steel

With a microstructure that is half austenitic and half ferritic, duplex stainless steel has higher strength than both these types of stainless steel. Additionally, it is also resistant to stress corrosion cracking. Besides, they are easy to weld, magnetic, and moderately formable.

So then how do you decide which steel is best for you. Given the variety of them, you have a number of factors to consider before making the right choice. Factors to consider while choosing the steel grade you want:

Corrosion Resistance

First and foremost, the surroundings in which the stainless-steel product will be used. This is the most essential factor in determining the right grade. This includes atmospheric conditions and presence of chemicals like acids.

Austenitic stainless-steel grade – 303 or 304 – are the most preferable in low corrosive surroundings. However, if you are going to be using them in more corrosive environments, especially acidic ones, chlorine or sea-water, 316 is preferred.

Mechanical Strength

For the requirements of corrosion resistance and strength at low or room temperatures, high-strength stainless steels in austenitic, duplex, and martensitic grades are available.

Heat Resistance

The surrounding temperature is a major factor in selecting the right grade as well. Excessively high temperatures (900 – 1175C) increase rate of corrosion and exert extra pressure on steels. Here heat resistant steels like grade 321 is required.

Magnetic Response

Stainless steels with higher nickel content, such as the 316 or 310 grades are non-magnetic in all situations. However, the ferritic and martensitic stainless steel grades of 400 series have high permeability and fall under the ferromagnetic category. Duplex grades of 2101 and 2205 are ferromagnetic as well.

Life Cycle Cost

This is a quite dependable factor. Stainless steel materials tend to be long-lasting and have an extended life; besides they are mostly recyclable. Therefore, better quality steels with higher costs last long once bought, and the prices are usually justified.

With a large number of steel grades available, Sunflag Steel aims to expand production with all grades of steel and venture into varied industries.

What is the Titanium Super Steel?

What is the Titanium Super Steel

One of the most dominant iron alloys in the world is steel. The reasons for its dominance are its strength, affordability, and ease of production. Over the course of time steel has replaced other iron alloys but it has not stopped there. Steel is still evolving along with new technologies and necessities. Scientists are discovering new concepts and new ways to make steel better, lighter, and stronger. They are trying to achieve a steel with these qualities by alloying steel with Titanium, a metal mostly used in the aerospace industry. The reason for all this effort is that normal steel is heavy. It is not useful for the construction of aircrafts and while it has been used to make automobiles for a long time, the large mass of steel has its effects on the fuel efficiency. On the other hand, there are various light-weight alloys available which have metals like aluminum and Titanium in large quantities raising their costs, hence making them economically unfeasible to make mass consumer goods.

Few years ago, material scientists at Pohang University of Science and Technology in South Korea invented a new type of light-weight, flexible, and ultra-strong titanium steel. This new alloy has a strength to weight ratio comparable to other hardest tempered Titanium alloys and at the same time, its cost plunges to one-tenth of those hardest tempered Titanium alloys, because it has significantly less amount of Titanium. This new alloy can be used in a variety of industries like aerospace, automobile, construction, etc.

Development of this kind of new material, which is tough, flexible, and cheap was really necessary for most of the hardware industries but the task of development was not that easy. In order to develop this material, the researchers at Pohang University of Science and Technology had to deal with a problem that had baffled material scientists for decades. In the 1970s, Soviet researchers had discovered that adding aluminum to steel, when making steel, makes the latter an incredibly lightweight and strong metal. But this new steel-aluminum alloy was very brittle. So, when the scientists would apply lots of pressure on this new alloy, it would break after a certain amount of pressure without bending. This brittleness occurs when aluminum and steel are alloyed together then many atoms in the two elements would fuse together and form a tough and crystalline structure that would break after a certain amount of pressure.The basic solution to the problem of brittle behavior can be solved if somehow, the crystalline structure, formed while alloying, doesn’t break by the application of a large amount of force. There are various trial and error methods used by researchers to overcome this problem. The methods include heat-treating and then thin rolling the aluminum steel to control when and where the crystals are forming. The team of few researchers also discovered that adding a small amount of nickel while making the alloy offered even more control over different properties of these crystalline structures. They also found that adding manganese to the alloy helps in reducing the brittleness, but not enough. Then, the researchers of the South Korean University claimed that adding Titanium to the original aluminum-steel alloy at high temperatures averts the formation of crystalline structures altogether. This breakthrough helped in making an alloy which would bend rather than break after an enormous amount of pressure is applied on top of it, thus solving the problem of the brittleness once and for all. The new found titanium super steel is also 13% less dense than normal steel, making it lighter and thus bestowing it with a higher strength to weight ratio than that of steel.But the red carpet walk of the new titanium steel doesn’t begin here. Before this new titanium steel can be mass produced, researchers have to solve a production level issue: most of the steelmakers use a silicate layer to cover and protect steel from oxidation. But the same silicate cannot be used in the mass production of titanium steel because silicate reacts with aluminum at lower temperatures. In future, if the researchers are able to solve this issue, we will certainly have this new titanium super steel all around us.

Understanding High Strength Steel Plate Processing

Steel is an extremely important material, used in construction and engineering industries all over the world. From the cars on the roads to the refrigerators in our houses, from the buildings we stay and work in to medical tools in hospitals, steel is visible in some form virtually everywhere. It is ubiquitous and indispensable. One of the common forms in which steel is used is plates.

Usage Of Steel Metal Plates

Steel metal plates, specifically, are also used in lots of modern technologies and constructions. For example, in making protection of cars from small caliber bullets, an imposition of a steel sheet of hardness 600 HB is used. In the printing office, a printing technology is not possible without the use of a steel metal sheet of 0.5mm thickness. Steel plates are also used in designing and manufacturing transformers. In this article, we attempt to explain what high-strength steel plate processing is.

High Strength Steel Plate Processing

Hot rolled steel can be cut into plates into 4mm thin sheets using plasma beam cutting. High tensile steel is highly brittle in nature due to high content of more than 45% silicon in it. That’s why it is very necessary to use plasma cutting to cut high tensile steel otherwise we can get uneven or wire edges which is definitely a bad quality of cutting output. Therefore, such steel costs less than cold-rolled steel. Hot rolled steel plate is heat treated only once after rolling and due to its low physical and chemical properties, it is usually not used for manufacturing enameled products. This happens because the crystals in the crystalline grid are arranged in random order leading to high diffusion of hydrogen and it also has a small filling factor. It’s very important to keep in mind that the cooling rate depends on the diameter. It is directly proportional to it. The greater the thickness of the steel, the more time it takes to cool down. Generally, the properties of hot-rolled steel are not as good as that of cold-rolled steel. It has higher chances of developing cracks and is gradually being used less and less in the process of production.

At Sunflag Steel, we provide the best quality steel services for our customers with enhanced capabilities. For all your steel needs, do contact us.

Where are Free and Semi-free Steel Used?

    Steel is one of the most pervasive materials used around us. From large plants to a small screw, everything has steel in it. It is one of the most important materials required in industries like construction, manufacturing etc. Sunflag takes a chance to explain the difference between when free and semi-free steel is used.The advantages of steel are its tensile strength and that the cost of production is lower than many other materials. It largely comprises of carbon and iron. Over the years, technology has advanced and many breakthroughs have happened. Even in the steel industry, different kinds and grades of steel are being produced. Free cutting steel is one such kind of steel. Free cutting steel are those iron – carbon alloys that are easy to be worked upon during machining operation. Machinability is the main property required for this kind of steel. In more technical terms free cutting steel has more Sulphur content in it than the carbon content. Free cutting steel has a higher percentage of Sulphur and phosphorus which is different from steel that has a higher percentage of carbon. These steels are defined in standard EN10087. They are divided into steels not intended for heat treatment, for case hardening or for direct-hardening steels. The high Sulphur and phosphorus content in free cutting steel makes it easy to cut through this kind of steel. This property of Free cutting steel makes its application very important in the manufacturing industry. Furthermore, Free cutting steel is mixed with tellurium to make an alloy, and to make it strong and solid. This enhances the mechanical property of the free cutting steel. Some essential criteria for making free cutting steel are

    1. Tool wear as low as possible during cutting times
    2. Sufficient surface quality
    3. Low cutting forces and temperature to allow for the application of sensitive cutting tools and machines.
    4. Short, light breaking chips to ensure undisturbed chip removal

    These properties make for better application of free cutting steel. Considering that free cutting steel has good machinability qualities, its use and application is suitable where good machinability is an important criterion. They are used for rapid production on single, or multiple spindle automatic lathe and capstan lathes of finely finished components which will not be subjected to high stress when in use. Some of these uses include light duty studs, cycle components, and many intricate parts for textile and printing machinery. The use and applications of free cutting steel varies with variation in grading. Bright Bars is a popular type of free cutting steel that has been in the market for some time. These are commonly used by many industries in production of some instruments.

    Due to its machinability property, this type of steel forms chips when it is worked on. Hence, they can take up only an average amount of heavy duty items at a time.

    The Bright bars are not given any heat treatment and they also involve a very limited amount of tempering so that the stress that forms during its production can be released. In the industry, these free cutting steel Bright bars are used for making nuts, bolts, spare parts for the automobile industries and for making some precision instruments or other kinds of instruments that are being used by several companies.There are different kinds of Bright Bars and they have their specific benefitsEN1A – This type of free cutting steel has two options. Leaded free cutting steel and non-leaded free cutting steel found in circular or hexagonal shaped bars in the market. Due to their make, they are fit for making nuts, bolts, and parts for some precision instruments.

    EN1AL – The EN1AL are leaded free cutting steel bars. These are steel bars alloyed with lead for its finish and extensive mechanical properties. They have corrosion resistant properties and hence do not rust that easily. Due to these properties, they are used extensively in automobile parts production.
    EN8M – This type of steel comprises of Sulphur with a small amount of carbon, are mostly round or hexagonal in shape, and are used for making shafts, gears, studs, pins gears.

    What Guidelines is Sunflag Steel Following During COVID-19?

    What Guidelines is Sunflag Steel Following During COVID-19

    Corona Virus has had its impact on various industries across the globe. The steel industry also has been hugely impacted. This impact is going to be easily felt over a period of next 2-3 years. Let’s explore what Sunflag Steel is doing to handle this crisis.

    There is an odd silver lining to this crisis. Since China has been the lead producer of the alloy, this is a good chance for India to enhance its production and aim for a larger global market share. Operations across different manufacturing units are running at minimum holding. Semi-finished inventories need to be stored. Currently, the manufacturers are looking for export opportunities and are also waiting for supporting government policy announcements. Sunflag Steel is also following the guidelines issued by WHO. Besides WHO guidelines, every country has its own set of guidelines and suggestions. Sunflag Steel is keeping up to date all regulations and rules concerned with health and control of pandemic COVID-19.

    Communication guidelines have been framed for employees and specific steps have been outlined for them to take proper protective steps to safeguard themselves and their families. The company spokesperson had issued a statement following the government directions: “Pursuant to the provisions of Regulation 30 of the Securities and Exchange Board of India (Listing Obligations & Disclosure Requirements) Regulations, 2015 as amended [Listing Regulations], we wish to inform you that the Government of Maharashtra issued directions for closure of Production and Operations at its facility located at Warthi, Bhandara Road, Bhandara in the State of Maharashtra in order to prevent and contain the spread of Corona Virus (COVID-19).

    Accordingly, the operations of our Plant situated at Warthi, Bhandara Road, Bhandara in the State of Maharashtra have been closed with effect from 24th March, 2020. The resumption of the operations at Plant would depend on the directions that would be issued by the Governments of Maharashtra from time to time.”The company is taking precautions to protect its employees from the coronavirus. There are specific travel advisories issued against foreign travel. Domestic travel is allowed only where it is absolutely essential. Unfortunately, work from home is not a viable option for manufacturing units. Conventionally, manufacturing firms have had better levels of productivity with more workforce on the floor.

    Most of the functions cannot be performed in isolation. Those have come to a standstill until it is safe for employees to work again.

    How Stainless Steel Rebar is used in reinforced concrete construction?

    How Stainless Steel Rebar is used in reinforced concrete construction

      When it comes to reinforced concrete construction, many companies and contractors prefer stainless steel rebars instead of conventional carbon steel rebars so that the service life of the structure is extended and lifecycle costs such as repairs and maintenance can be minimized.Stainless steel has a unique ability to efficiently resist corrosion caused due to chloride or other factors. This helps in increased durability of concrete. For this reason, stainless steel rebars are extensively used in structures like highway bridges, ramps and barrier walls, parking garages, marine facilities, tunnels, building foundations, and restorations. They are also an exceptional choice for the infrastructure of chemical and other process plants where corrosion resistance is extremely necessary.The strength and durability of the structure are important to ensure that it stays erect and unharmed during a seismic disturbance. Due to their excellent properties like high tensile strength, ductility, toughness, and fatigue resistance, stainless steel bars are a leading preference to build bridges and other structures in areas of high seismicity.For applications where the magnetic properties of basic carbon steel are not favorable, stainless steel rebars are the best alternative. As they have low magnetic permeability, they do not form a magnetic field and can be included where ambient magnetic fields from ferrous metals may damage sensitive machinery or processes.Since stainless steel rebar is high strength steel, the amount of concrete cover used in a project to prevent corrosion and disintegration can be greatly reduced. These days, many engineers and architects design various structures in accordance with the use of stainless steel bars which result in considerable saving in cost and material. Moreover, with stainless steel rebars, additional protection of belts and suspenders in bridges is unnecessary since this high –performance system is more than sufficient to provide the required protection. They also lead to less disruption in service operations since the need for repair or maintenance is negligible. The length of a stainless steel bar is an important factor when it is used in concrete reinforcement. In this process, the steel bars should be connected to each other to gain maximum length. This results in the overlapping of bars that reduces effective bar length. It also increases costs and degrades the strength of the structure. With long bars, the percentage of bar lost to overlapping is smaller and they need less time and effort to join as compared to several smaller bars. Moreover, they also save weight and space without any loss of strength.At Sunflag Steel, stainless steel rebars are available in different sizes and lengths so that you can use them in different projects and structures. These superior quality bars are characterized by all the mechanical properties that will make them last for a lifetime!

      Corrosion Resistance

      Stainless Steel Rebars – Types and Properties


        Nowadays, the use of stainless steel in the construction sector is increasing day by day. And why not? Stainless steel is the most economically viable and corrosion-resistant reinforcing steel alternative in service environments. Once a structure is constructed with stainless steel reinforcement, the need for repairs throughout the life cycle of the project will reduce significantly. That’s why even if at first, it may seem that stainless steel rebars would be an expensive option, they prove to be much more economical in the longer run. But what are stainless steel rebars and how are they beneficial? Also known as stainless steel reinforcement bars, stainless steel rebars are bars with low carbon steel alloy content. They contain at least 12% of chromium and 8 to 12% nickel. This makes them extremely durable and resistant to corrosion.

        Types Of Stainless Steels Rebars

        There are 4 types of stainless steels:

        • Martensitic Stainless Steel
        • Ferritic Stainless Steel
        • Austenitic Stainless Steel
        • Duplex or Austenitic-Ferritic Stainless Steel

        Out of these only Austenitic and Duplex Stainless Steels are used to produce reinforcement bars.

        Austenitic Stainless Steel Rebar

        Austenitic steel is very high on nickel (around 7%). Due to this reason, the alloy is extremely weldable and malleable and has excellent corrosion resistance. It also has a high amount of chromium and 2% to 3% of molybdenum addition. This further strengthens its corrosion resistibility in harsh environments, especially against chlorides. The Nitrogen content provides tensile strength and a higher yield.Austenitic steel is mostly used for industrial pipings and architectural projects as reinforcement bars due to their high ductility, nonmagnetic nature, and large scale of service temperature. It is classified into various grades in different countries according to the proportion of elements present in it.

        Duplex Stainless Or Austenitic-Ferritic Stainless Steel Rebar

        An amazing combination of ferritic and austenitic steels, duplex stainless steels are stronger than both the types and is extensively used in the underwater oil industry. This is due to its high corrosion resistance capabilities that allow it to withstand extremely corrosive saltwater for extended periods.Rebar is a primary application for this steel. The blend of Austenitic and Ferritic stainless steels has provided an exceptional element of strength and corrosion resistance which has made it suitable for various rebar applications like bridge decks, barrier and retaining walls, anchoring systems and dowels, chemical plant infrastructure, coastal piers and wharves, bridge parapets, sidewalks and bridge pilings.Duplex Stainless Steel has lower nickel content as compared to Austenitic steels which makes them less expensive. This steel is also classified into different grades.

        Properties Of Stainless Steel Rebars

        Stainless steel rebars have been rigorously tested through various parameters to see how they are superior to other rebars. They have ranked considerably ahead as a substantial pack of alloys differentiates them from other ineffective and fragile rebar offerings.

        1. High Strength Steel

        Stainless steel contains 10% more chromium than other alloying elements. Chromium is the key substance that increases its hardness and tensile strength. It also contains nickel that provides similar benefits but without compromising on ductility and toughness.Duplex steel bars are stronger than austenitic steel bars.

        2. Corrosion Resistance

        Stainless steel rebars have a high concentration of chromium which forms a layer of oxide that prevents corrosion. This property helps it to withstand the destructive forces of chloride from road salts, seawater, and even concrete itself.Austenitic stainless steel is best in corrosion resistance since it contains at least 16% chromium.

        3. Ductility

        The ductility of stainless steel rebar comes from its nickel content. With excellent ductility and corrosion resistance, these rebar products are perfect to use in earthquake zones, cold applications, bridges, etc.

        4. Magnetic Response

        The high content of nickel in stainless steel bars eliminate their magnetic response. Normal carbon steel has high magnetic permeability and thus cannot be used in all applications. Here, stainless steel rebars come to the rescue!

        5. Fire Resistance

        Stainless steel bars perform better at high temperatures as compared to other carbon steel bars. They show better fire resistance due to their high strength retention factor at elevated temperatures (above 500°C).

        6. Cryogenic Resistance

        Stainless Steel Bars can handle a wider range of temperatures. The tensile strength and toughness of austenitic steel remain intact even in sub-zero temperatures which widen their scope of application in various fields.
        Are you looking for Stainless Steel Rebar or related steel products for your construction project? At Sunflag Steel, we manufacture highly durable and high-quality Stainless Steel Rebars that will last for years to come!

        Indian Steel Industry after COVID-19

        The COVID-19 crisis has led to worldwide closures and losses. Every industry found itself to be a victim of one of those consequences and steel was no different. However, phased lockdown relaxations around the world have assisted in restarting the industry and help with losses as Indian steel makers are now able to sell back in the domestic market and not rely heavily on exports.


        Massive steel plants were one of the few places of work that continued operations through the lockdown stages with minimum capacity, as they were considered a part of essential businesses. As rules are gradually relaxing in both India and the rest of the world, steel plants in some states of India have resumed functions at full capacity. However, profits might be affected as structural changes take place around the globe. With every country (including India) focusing on local production over international trade and shift in political powers, it might still be difficult to expand internationally and achieve pre-COVID profit margins with buyers worldwide. Due to the local economy facing challenges, steel makers (like other businesses) are trying to accelerate functions in the Indian domestic market to boost the economy – an approach that is likely to continue post-COVID.


        The steel business thrives heavily on other industries like machinery, mechanics and automative for stronger profits. Owing to the pandemic, these manufacturers have also taken a strong hit. Automative industry was took a tough beating by COVID-19 due to low incomes, job losses and general downfall in movement (that rose because of restrictions and work from home norms).

        That said, conditions are uncertain for anyone to predict. A cure for COVID-19 or a rise in continual removal of restrictions, will likely lead to employees returning to their workplaces at larger capacities. This, in turn, would mean people using their private cars again and this time preferring them over public transport due to health risks. A behavioural change like that could allow automative industries to grow globally including in India which would have a directly positive impact on steel trade – both domestically and globally.

        While everyone is trying their hands at observing and analysing trends, it is safe to say that initial days of recovery have begun and there is potential for the steel business to rise again at home ground.

        Steel is the future of Sustainable Construction

        Steel is the future of Sustainable Construction

        With climate change accelerating, every industry is trying their best to pace themselves and move towards sustainable procedures. Constructions are rising rapidly around the world which makes it all the more important to consider sustainable materials and processes along the way. These decisions need to fall in line with building robust structures that sustain themselves in the long run. Steel checks all the boxes of being a secure raw material and a greener alternative.


        Steel is one of the few materials on earth that can’t just be ‘upcycled’ once but ‘multicycled’ over and over again. This eminent element does not lose its quality overtime with use making it suitable for multiple usage. Likewise, it is significantly used in industries that support sustainability – including energy-efficient infrastructure, low-carbon transport services amongst others. Luckily for most builders and the earth, steel is not just recyclable but also reusable. Leftovers as well as previously used steel materials can be reused for bridge constructions, wall structures, residential building elements, etc. Unlike non-renewable resources that get spent quickly in the construction business, steel is available in abundance on earth – making it a sensible choice over other materials for a better future.


        One of steel’s terrific qualities lies in its durability. This structural component is easily stronger than most items used in this business. The sheer strength of steel helps in building durable structures that last long and are less susceptible to damages and demolitions. This, in turn, helps in reducing wastage through the process leaving more land spaces, longer product-life cycles and healthier air for people and businesses.Adding on to this, steel is not prone to any moisture or humidity damage making it a significant contributor in any property. Due to this very trait, structures created out of steel are less likely to cause health and well-being risks – something that most organisations and contractors pay detailed attention to. It also allows for creating better foundations and anatomies for high-rise complexes.


        Reduced carbon emissions is not just the need of the hour but also a quality that most industries and trades are trying to embed in their systems. Steel production is one of the few industries that has achieved this by reducing overall emissions as well as greenhouse gases. Coming from a carbon-hungry background, steel manufacturers and traders have recently learned to reduce their carbon footprint by making a number of changes including better management systems, superior filtration systems and alternatives to blast furnace systems amongst other things. Using newer technologies like these to reduce carbon emissions may also lead to other benefits. If used correctly, some up and coming machineries and their mechanics may help in cutting down the effect and pollution of other harmful gases that are released during steel production and making.


        We at Sunflag Steel understand and believe in the importance of a greener future. This constantly drives us to become a steel provider that helps our clients and our environment alike. Our mission lies in achieving “sustainable growth and return on investment” for our clients through continually boosting our technologies and improving our human resources. Sunflag Steel uses state-of-the-art equipments in research and developmental labs to consistently assist in all production facilities – which leads us in going about our business in an environmentally efficient manner without leaving a notable carbon footprint.

        Product Sustainability – Life Cycle of Steel

        With the world we are heading towards, in terms of global warming and environmental concerns, it is high time that we start thinking of more sustainable options in our everyday life. We have reached a stage where there is a dire need for sustainability to better our tomorrow.

        As we make a shift from the products that we use on a daily basis, based on how sustainable they are, steel plays an important role. Steel is one of most heavily recycled materials in the world and it can be recycled almost indefinitely without losing any of its properties. Here is the life cycle of steel to understand how it works as a sustainable metal.

        • Responsibly getting raw materials. The first step in the production of steel is getting hold of the raw material in a manner that is sustainable and responsible, therefore causing the least amount of damage to the environment.
        • The second step is the efficient production of steel. The next important step within the life cycle of steel is to actually produce the steel from the raw materials, effectively and efficiently. There are two different ways through which this product can be done. Other through iron-ore based production in blast furnaces, or scrap-based production. It is within the space of iron-ore based productions that companies have the opportunity to improve and be more environmentally effective. Technology in the iron-ore based production of steel needs to be constantly improved to reduce the amount of carbon dioxide emissions.
        • The next step in the production of steel is obviously the use of the same. Steel is a commonly used metal and is extremely strong. It has multiple uses, a lot of which we are aware of the everyday products that we use. These range from the body of cars to the utensils in our household. It is crucial here that energy-efficient methods are used during the manufacture of steel-based products.
        • Once the steel has been used, there is the recirculation of residual steep production. Wherever possible, residuals from steel making are recirculated, in a manner wherein they substitute virgin raw materials. Most of the dust created in the process of making steel is reused for the same process. This leads to a decrease in the amount of waste being produced.
        • Finally, the final products which were made, once they run their course, can be recycled multiple times, without loss of original properties.